동치미로부터 분리된 유산균 Lactobacillus plantarum HB1의 아질산염 소거 효과

유형재 · 이선숙 · 이동석 · 김한복*

호서대학교 자연과학부 생명과학전공, 1인제대학교 의생명공학대학 임상병리학과

다양한 유산균 자원을 확보하기 위한 일환으로, 동치미에서 유산균을 분리하였다. 동치미에서 분리된 균주는, 당이용성과 16S rRNA 유전자분석을 통하여, Lactobacillus plantarum HB1으로 밝혀졌다. 이 균주는 Gram 양성균 이었으며, catalase를 갖고 있지 않았다. 16S rRNA 유전자의 염기배열 120 bp을 분석해 본 결과, 1~88 bp 영역에서 는 기존의 것과 거의 100%의 상동성을 보여 주었고, 나머지 32 bp의 영역에서는 상당한 변이를 보여 주었다. 따 라서 본 균주는 기존의 *L. plantarum*과는 다른 균주임을 확인할 수 있었다. 동치미의 무에 포함되어 있는 **질산염** 은 체내에서 **아질산염으로** 바뀐다. **아질산염은 아민과 반응을** 일으켜 니트로사민이 되는데, 이 성**분**은 위암 발 생을 일으키는 주요인자 중의 하나이다. 동치미에서 분리된 본 균주의 배양액에 400 μM의 아질산염을 첨가한 경 우 1시간 30분 후에 거의 소거되었다. 아질산염 소거작용에 관여하는 본 균주 배양액 중의 특정성분의 분리, 소거 작용 기작 등에 관한 보다 깊이 있는 연구가 앞으로 필요하다.

Key words \(\subseteq Lactobacillus plantarum, nitrite, nitrosamine, Tongchimi, 16S rRNA

김치나 요구르트, 치즈와 같은 발효식품에 존재하는 대표적인 균주로 Lactobacillus, Lactococcus, Leuconostoc, Pediococcus 속 이 알려져 있다(12, 18). **유산균**은 Gram 양성, 비포자성, catalase 음성의 특성을 보이며 발효식품, 자연계, 동물의 장에 흔히 존재 한다(22). 유산균의 항암(17), 항돌연변이(15, 21), 면역 증강(20), 항균 효과(11), 콜레스테롤 저해효과(24) 등이 잘 알려져 있다. 유산균의 glycopeptide, polysaccharide, phosphopolysaccharide는 항암효과가 있는 것으로 알려져 있다(21). 또한 유산균의 일부는 glycoprotein을 체외로 분비하는 데, 이것이 항돌연변이 효과가 있다고 보고되어 있다(21). 이러한 유산균이 인체에 미치는 유익 한 효과를 살리기 위해, 내산성 및 내담즙성 발효유, 유아식, 의 약용 정장제, 축산용 사료첨가제를 비롯한 다양한 유산균 관련제 품 개발이 이루어지고 있다.

기존 동치미에 관한 연구는 균주개발(2), 음료용 동치미 개발 (5), 항**균효과**(4), 항돌연변**이효과**(8) 등의 측면에서 진행되어 왔 다. 본 연구에서는 다양한 유산균 자원을 확보하려는 일환으로, 동치미로부터 유산균을 분리, 동정하였다. 당이용 분석과 16S rRNA 유전자 분석에 의해 본 유산균은 Lactobacillus plantarum 으로 판명되었으며 homolactic fermentation을 수행할 수 있었다. L. plantarum은 게놈의 염기배열이 다 밝혀질 만큼 유산균 중에 서도 중요**한 균**주이다(19). 본 **균**주는, 기존의 *L. plantarum*과는 다른 strain임을 16S rRNA 유전자분석을 통해 밝혔다.

배추는 김치의 재료로, 무는 동치미의 재료로 많이 이용되고

*To whom correspondence should be addressed. Tel: 041-540-5624, Fax: 041-548-6231

E-mail: hbkim@office.hoseo.ac.kr

있다. 배추나 무는 비료성분의 하나인 질산염에 흔히 오염되어 있는 것으로 알려져 있다(25). **질산염**은 저장 중에, 혹은 소화기 관내에서 쉽게 아질산염(nitrite)으로 환원된다(3,6). 질산염, 아질 산염은 또한 육제품의 발색제로 식품가공업에서 많이 사용되고 있다. 아질산염은 아민류와 반응하여 니트로사민을 생성한다 (3,6). 니트로사민은 diazoalkane으로 전환되어 단백질이나 핵산 을 alkyl화시켜 위암 등을 유발한다(3). Vitamin C, 갈변물질, 야 채, 해조류 추출물 등은 니트로사민의 생성을 억제할 수 있는 능 력이 있다고 알려져 있다(1,3). Bifidobacteria인 경우에는 유산이 아질산염의 소거에 관여할 것으로 추정하고 있다(14). 본 연구에 서는 L. plantarum 배양액이 아질산염 성분을 소거할 수 있는지 여부를 결정하였다. 또한 동치미에서 분리한 본 균주가 우유를 발효시켜 요구르트를 만들 수 있음을 보여 주었다.

재료 및 방법

균주분리

동치미의 국물을 희석하여 MRS agar 평판배지(Difco, Detroit, USA)에 도말하고, 37°C에서 배양하여 단일 콜로니를 얻었다.

균주동정

API 50 CHL kit (Biomérieux, Taejon, Korea)를 이용하여 동 치미에서 분리한 균주를 동정하였다.

pH에 따른 균주 생장

HB1 균주를 pH 4~10으로 조정된 MRS 액체배지(Proteose

peptone No 3 10 g, beef extract 10 g, yeast extract 5 g, dextrose 20 g. polysorbate80 1 g. ammonium citrate 2 g. sodium acetate 5 g, MgSO₄ · 7H₂O 0.1 g, MnSO₄ · 7H₂O 0.1 g, K₂HPO₄ 2 g per 1L of dH₂O)에서 배양하였다. 한 시간 간격으로 균주의 성장을 spectrophotometer (UVICON930)를 이용하여 600 nm에서 측정하 였다.

PCR 및 sequencing

16S rRNA 유전자를 증폭할 수 있는 2개의 primer 5'GAGTTT-GATCCTGGCTCAGGA3'와 5'CGACGACCATGAACCACCTGT3' (9)를 유산균 single colony로부터 얻은 chromosome과 섞어준 후 PCR을 수행하였다. PCR은 denaturation을 95°C에서 30 sec, annealing을 50°C에서 30 sec, extension을 72°C에서 1 min 강, 35 cycle 수행하였다. Sanger의 dideoxy 방법과 Dye Terminator 방 법을 이용하여 위에서 얻은 PCR산물의 염기서열을 결정하였다 (23).

아질산염 소거능

유산균의 아질산염 소거능은 NaNO, 용액과 Griess 시약 (Promega, Madison, USA)을 이용하여 측정하였다(6). L. plantarum을 MRS 액체배지에서 12시간 배양하였다. 새로운 MRS 배지에 배양액을 접종량이 1%(v/v) 되게끔 식균하고 6시간 후에 NaNO,를 400 μM의 농도가 되도록 첨가한 것을 실험구로 하였다. 대조구로는 NaNO, 400 μM를 첨가**한** MRS 배지에 **균**주 배양액을 넣지 않은 것으로 하여 실험구와 동일한 조건에서 배 양하면서 NaNO,의 농도변화를 측정하여 균주 배양액의 NaNO, 소거능력을 계산하였다.

요구르트 제조

S사 제품 우유를 구입하여 L. plantarum HB1 균주 배양액 1%를 잘 섞은 후 37°C에서 배양하였다.

요구르트**의 산**도 측정

요쿠르트 5 ml과 증류수 5 ml을 잘 혼합한 후, phenolphthalein 용액 250 ul를 첨가한 다음 0.1 N NaOH로 적정하여 산도를 결 정하였다.

결과 및 고찰

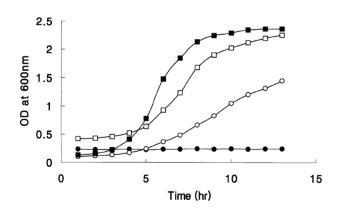
균주특성

동치미에서 유산균을 분리해서 API 50 CHL kit를 이용하여 동정한 결과, Lactobacillus plantarum으로 판명되었다(Table 1). 본 균주 HB1은 Gram 양성균이었고 catalase를 만들지 못했으며, 형태는 간균이었다. HB1 strain은 glucose, galactose, fructose, maltose 등을 탄소원으로 이용했지만, raffinose, xylitol을 이용하 지는 못했다(Table 1). L. plantarum R07(12)은 L-arabinose, sorbitol, D-raffinose, D-turanose를 이용했으나, HB1은 각각의 당 을 이용하지 못하는 등, 두 strain 간에는 당이용성의 차이를 보

Table 1 Phenotypic characteristics of L. plantarum HB1 and RO7

Table 1. Phenotypic characteristics of L. plantarum HB1 and RO7		
	HB1	RO7
Glycerol	-	-
Erythritol	-	-
D-Arabinose	-	-
L-Arabinose	-	+
Adonitol	-	-
β-Methyl-xyloside	-	-
Galactose	+	+
D-Glucose	+	+
D-Fructose	+	+
D-Mannose	+	+
L-Sorbose	-	-
Rhamnose	_	_
Dulcitol	_	_
Inositol	_	_
Mannitol	+	+
Sorbitol	_	+
α-Methyl-D-mannoside	+	+
α-Methyl-D-glucoside	-	-
N-Acetylglucosamine	+	+
Amygdalin	+	+
Arbutin	+	+
Esculin	+	+
Salicin	+	+
Cellobiose	+	+
Maltose	+	+
Lactose	+	+
Melibiose	+	+
Saccharose	+	+
Trehalose	+	+
Inulin	'	'
Melezitose	+	+
D-Raffinose	т	+
Amidon	-	т
	-	-
Glycogen	-	-
Xylitol	-	-
β-Gentiobiose	±	+
D-Turanose	-	+
D-Lyxose	-	-
D-Tagatose	-	-
D-Fucose	-	-
L-Fucose	-	-
D-Arabitol	土	+(weak)
L-Arabitol	-	-
Gluconate	±	+
2-Ceto-gluconate	-	-
5-Ceto-gluconate	-	-
Ribose	+	+
D-Xylose	-	-
L-Xylose	<u>-</u>	

194 Han Bok Kim et al. Kor. J. Microbiol


여 주었다(Table 1).

동치미 발효에서는 처음에 호기성균이 증식하면서 산소가 고 갈된다. 이렇게 되면 통성 혐기성의 유산균이 본격적으로 증식하면서 유산을 생성되고, 그 유산의 영향으로 다른 균의 증식이 억제된다. 동치미에서 분리된 L. plantarum은 동치미 숙성 마지막단계의 우점종 가운데서 분리된 것으로 생각되었다(7). 김 등(2)역시 동치미에서 Leuconostoc mesenteroides와 함께 L. plantarum을 분리, 동정하였다. 따라서 L. plantarum은 동치미나 김치에서흔히 분리되는 균주임을 알 수 있다.

본 균주는 pH 8에서 최적의 성장을 보였으며 pH 5에서는 pH 8의 성장에 비해 70%성장을 보여 주었다(Fig. 1). 배지의 pH가 4일 때는 전혀 성장하지 못했다(Fig. 1). 음식물 복용 전 위액의 pH는 2정도이고, 식후에는 3~7 근방이라고 알려져 있다(10). 따라서 본 균주를 식후에 복용하면 위장 내에서도 생존할 수 있어 그 효과를 볼 수 있을 것으로 기대된다.

L. plantarum HB1의 16S rRNA 유전자의 염기배열

Chagnaud 등은 16S rRNA의 가변지역에 해당하는 primer를 디자인하여 PCR을 수행하여, Lactobacillus속의 L. plantarum, L. casei, L. fermentum, L. casei의 1000 bp PCR 산물을 얻은 바 있다(9). 본 연구에서도 같은 염기배열의 primer를 이용하여 L. plantarum HB1 16S rRNA 유전자 부분을 PCR하여 1000 bp의 산물을 얻었고(자료 미제시) 그 일부분의 염기배열을 결정하였다

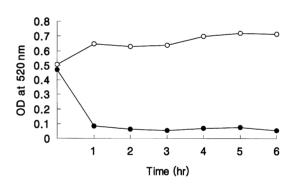


Fig. 1. *L. plantarum* HB1 growth depending on various pHs at pH 4 (\bullet) , $5(\bigcirc)$, $8(\blacksquare)$ and $10(\square)$.

(Fig. 2). 본 균주는 기존의 L. plantarum RO7(12), WCFS1 (19)의 16S rRNA 유전자 중, 1~88 bp에 걸쳐 82번째 T를 제외 하고는 100% 일치하였다(Fig. 2). 따라서 본 균주가 L. plantarum 임을, API 50 CHL kit에 의한 동정 결과에 뒤이어, 다시 확인할 수 있었다. L. plantarum은 유산균을 대표하는 균주의 하나로 그 중요성이 인식되어, 근래 게놈 전체의 염기배열이 결정되었다 (19). 본 연구에서 **분리된 균**주 HB1을 L. plantarum RO7, WCFS1 strain과 비교했을 때, 16S rRNA 유전자의 나머지 89~120 bp 영역 32 bp에 걸쳐서는 상당한 변이를 보여 주었다 (Fig. 2). 반면에 L. plantarum RO7과 WCFS1은 1~120 bp 전영 역에서 100% 일치하였다(Fig. 2). 그러나 일반적으로 89~120 bp 영역은 L. plantarum 종에서도 strain에 따라 상당한 변이를 보여 주는 것으로 알려져 있다(9). 본균주 HB1은 기존 대부분의 L. plantarum과는 상당히 다른 strain일 가능성이 있다. 흥미롭게도, HB1 strain의 16S rRNA 유전자의 93~120 bp 영역의 27 bp부분 은, Blast 검색결**과** Staphylococcus, L. salivarius 16S rRNA유전 자의 해당부분과 100% 일치하였다(Fig. 2).

아질산염 소거능 측정

동치미에서 분리한 *L. plantarum* 균주의 아질산염 소거능력 여부를 조사한 결과 Fig. 3과 같았다. 아질산염을 넣기 전에 *L. plantarum* 균주를 6시간 배양한 후 400 μM의 아질산염을 첨가

Fig. 3. Nitrite elimination by *L. plantarum* HB1 culture. *L. plantarum* HB1 was cultured in MRS liquid media for 6 hr, and then 400 μ M NaNO₂ was added to the culture (). MRS liquid media containing 400 μ M NaNO₂ only (). OD values were determined at 520 nm using Griess reagent.

1 11 21 31 41 51 61 71 81 91 101 111
1. CGAAGAACCT TACCAGGTCT TGACATACTA TGAAAATCTA AGAGATTAGA CGTTCCCTTC GGGGACATGG ATACAGGTGG TCCATGGTCG TCGAACCAC GTGCATCGC GGCCGCCTGC

2. CGAAGAACCT TACCAGGTCT TGACATACTA TGCAAATCTA AGAGATTAGA CGTTCCCTTC GGGGACATGG ATACAGGTGG TGCATGGTTG TCGTCAGCTC GTGTCGTGAG ATGTTGGGTT

3. CGAAGAACCT TACCAGGTCT TGACATACTA TGCAAATCTA AGAGATTAGA CGTTCCCTTC GGGGACATGG ATACAGGTGG TGCATGGTTG TCGTCAGCTC GTGTCGTGAG ATGTTGGGTT

4. GAGCAACGCC GCGTGAGTGA TGAAGGTCTT AGGATCGTA AACTCTGTTG TTAGGGAAGA ACAAATTTGT TAGTAACTGA ACAAGTCTTG ACAATCACTA GTGAATTCGC GGCCGCCTGC

5. CAGCCGTCTA AGGTGGGACA GATGATTGGG GTGAAGTCGT AACAAGGTAG CCGTAGGAGA AGTGCGGCTG GATCACCTCC TTGTCGACGC GTAATCACTA GTGAATTCGC GGCCGCCTGC

Fig. 2. 16S rRNA gene alignment. Each 16S rRNA gene was compared by using the BLAST function of the National Center for Biotechnology

Information. 1, *L. plantarum* HB1; 2, *L. plantarum* R07; 3, *L. plantarum* WCFS1; 4, *Staphylococcus* sp.; 5, *L. salivarus*. \Box indicates consensus sequences of 1, 2, 3, and \Box indicates those of 1, 4, 5.

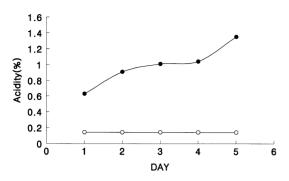


Fig. 4. Acidity change of vogurt. Acidity of milk fermented with L. plantarum HB1 (●) or milk only (○) was determined.

한 결과 1시간 30분만에 거의 대부분 소거되었다. 이 농도의 아 질산염을 배양액에 처음부터 넣고 균주를 접종하면 균주의 성장 이 심하게 방해를 받았다(자료 미제시). 이는 일정농도 이상의 아질산염이 균주에 상당한 부담요인으로 작용하는 것을 시사한 다. 동치미 국물에 채소류를 1시간 반 이상 재워 두는 것도 채 소류의 아질산염 소거에 도움이 될 수 있을 것이다.

L. plantarum 균체내부로 아질산염이 흡수되거나, 혹은 균체에 서 분비되는 효소가 아질산염을 환원시키는 등의 기작으로 아질 산염이 소거될 수 있을 것으로 사료된다. 이를 규명할 수 있는 보다 깊이 있는 연구가 앞으로 필요하다. 아질산염 소거능은 낮 은 pH값에서 우수하다고 알려져 있다(16). 숙성된 동치미의 pH 는 3~4 전후로 보고되어 있어(2), 이런 조건에서 동치미의 아질 산염 소거효과는 더욱 효과적일 수 있을 것이다. 또한 아질산염 소거능과 항산화효과는 밀접한 관련이 있다는 보고가 있다(1,6). 채소류가 비록 아질산염에 오염되었어도, 채소류 자체가 갖고 있 는 항산화물질에 의해 아질산염에 의한 위해요인이 상당히 감소 된다(6).

무를 비롯한 각종 채소류는 2000 ppm의 아질산염에 오염되어 있다는 보고(25)를 비롯하여 그 위해성이 많이 지적되어 왔다. 그러나, 이를 발효시킨 김치나 동치미를 먹을 경우, 균주 혹은 발효산물에 의한 아질산염 소거효과 등으로 니트로사민의 생성 을 막아 암예방 효과를 기대할 수 있을 것이다.

요구르트 제조

동치미에서 분리된 유산균을 이용해서도 요구르트를 제조할 수 있는지 여부를 결정하였다. 본 균주 HB1은, 당으로부터 가스 를 생성하지 않는 homolactic fermentaion의 양상을 보여 주었다. HB1과 16S rRNA의 염기배열이 가장 가까운 L. plantarum R07 도 homolactic fermentation을 일으키는 균주이다(12). Heterolactic fermentation에서는 유산이외에 에탄올, 초산, 이산화탄소 등도 생 성되므로 일반적으로 요구르트 제조에 적합하지 않다고 알려져 있다. 유산균에 의해 요구르트가 만들어질 때 산도는 HB1 균주 접종 후 5일 째 1.4%까지 증가한 반면에 접종하지 않은 우유의 산도는 0.2%를 유지하였다(Fig. 4). 김치에서 분리한 유산균을 요구르트 제조에 이용한 사례도 보고된 바 있다(7). HB1 균주가 일단 요구르트 제조에도 이용될 수 있는 가능성은 보였지만, 그 밖에 본 균주에 의해 제조된 요구르트의 향, 맛, 질감 등에 관한 관능적 평가도 앞으로 필요할 것이다.

감사의 말

본 연구는 과학기술부 · 한국과학재단 지정 지역협력연구센터 인 인제대학교 바이오헬스 소재 연구센터의 연구비와, 2003년도 호서대학교 특별 학술연구비 지원에 의해 수행되었음.

참고문헌

- 1. **김**수민, 조영**석**, 성삼경. 2001. 식물체 추출물**의** 항**산**화 성 및 **아질산염 소거**작용. 한국식품과학회지 33, 626-632.
- 2. 김정희, 김종일. 1999. 무 쥬스 제조를 위한 starter로써 동치미에서 분리한 유산균의 동정 및 발효특성. 미생물 학회지 35. 307-314.
- 3. 박영범, 이태기, 김외경, 도정룡, 여생규, 박영호, 김선봉. 1995. 결명자 추출물의 아질산염 소거인자의 특성. 한국 식품**과**학회지 27, 124-128.
- 4. 소명환, 조신호, 이진영, 김미영. 1996. 냉면국물 모델 시 스템에서 **동치미** 국물**의** 사용에 **의한** 대장**균**군 증식억 제. **한**국식품영양학회지 9, 29-36.
- 5. 안용근. 2001. 음료용 동치미 제조. 한국식품영양학회지 14, 46-51.
- 6. **이기동**, 장학길, 김현구. 1997. 버섯류의 항산화성 및 **아** 질산염 소거작용. 한국식품과학회지 29, 432-436.
- 7. 이영환, 강미선. 1996. 김치에서 분리한 유산균 Lactobacillus plantarum의 이화학적 특성 및 β-galactosidas 활성. 한국 농화학회지 39, 54-59.
- 8. 주길재, 이창호, 우철극. 2001. **동치미로부터** 항돌연변이 물질을 생산하는 유산균의 분리 및 특성. 생명과학회지 11, 432-438.
- 9. Chagnaud, P., K. Machinis, L.A. Coute, A. Marecat, and A. Mercenier. 2001. Rapid PCR-based procedure to identify lactic acid bacteria: application to six common Lactobacillus species. J. Microbiol. Methods 44, 139-148.
- 10. Dressman, J.B., R.R. Berardi, L.C. Dermentzoglou, R.L. Russell, S.P. Schmaltz, J.L. Barnett, and K. Jarvenpaa. 1990. Upper gastrointestinal pH in young, healthy men and women. Pharm. Res. 7, 756-761.
- 11. Eijsink, V.G.H, M. Skeie, P.H. Middelhoven, M.B. Brurberg, and I.F. Nes. 1998. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 64, 3275-3281.
- 12. Ennahar, S., Y. Cai, and Y. Fujita. 2003. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 69, 444-451.
- 13. Fernandes, C.F. and K.M. Shahani. 1990. Anti-carcinogenic and immunological properties of dietary lactobacilli. J. Food Prot. 53, 704-710.
- 14. Grill, J.P., J. Crociani, and J. Ballongue. 1995. Effect of bifidobacteria on nitrites and nitrosamines. Lett. Appl. Microbiol. 20, 328-330.
- 15. Hosono, A., R. Wardojo, and H. Otani. 1990. Inhibitory effects of lactic acid bacteria from fermented milk on the mutagenicities of volatile nitrosamines. Agric. Biol. Chem. 54, 1639-1643.
- 16. Kang, Y.H., Y.K. Park, S.R. Oh, and K.D. Moon. 1995. Studies on the physiological functionality of pine needle and mugwort

196 Han Bok Kim et al. Kor. J. Microbiol

- extracts. Kor. J. Food Sci. Technol. 27, 978-984.
- Kelkar, S.M., M.A. Shenoy, and G.S. Kaklij. 1988. Anti-tumor activity of lactic acid bacteria on solid fibrosarcoma, sarcoma-180 and Ehrlich ascites carcinoma. *Cancer Lett.* 42, 73-77.
- Kim, T., S. Min, D. Choi, J. Jo, and H. Kim. 2000. Rapid identification of *Lactobacillus plantarum* in Kimchi using polymerase chain reaction. *J. Microbiol. Biotechnol.* 10, 881-884.
- Kleerebezem, M., J. Boekhorst, R. van Kranenburg, D. Molenaar, O.P. Kuipers, R. Leer, R. Tarchini, S.A. Peters, H.M. Sandbrink, M.W. Fiers, W. Stiekema, R.M. Lankhorst, P.A. Bron, S.M. Hoffer, M.N. Groot, R. Kerkhoven, M. de Vries, B. Ursing, W.M. de Vos, and R.J. Siezen. 2003. Complete genome sequences of *Lac-tobacillus plantarum* WCFS1. *Proc. Nat. Acad. Sci. USA* 100, 1990-1995.
- Perdigon, G., M.E. de Macias, S. Alvarez, G. Oliver, and A.P. de Ruiz Holgado. 1988. Systemic augmentation of the immune

- response in mice by feeding fermented milk with *Lactobacillus* casei and *Lactobacillus acidophilus*. *Immunology* 63, 17-23.
- 21. Rhee, C. and H. Park. 2001. Three glycoproeins with antimutagenic activity identified in *Lactobacillus plantarum* KLAB21. *Appl. Environ. Microbiol.* 67, 3445-3449.
- 22. Ringo, E. and F.J. Gatesoupe. 1998. Lactic acid bacteria in fish: a review. *Aquaculture* 160, 177-203.
- Sanger, F., S. Nicklen, A.R. Coulson. 1992. DNA sequencing with chain-terminating inhibitors. *Biotechnology* 24, 104-108.
- Shun, Y.L., J.A. Ayres, W. Winkler, and W.E. Sandine. 1989. *Lactobacillus* effect on cholesterol: in vitro and in vivo results. *J. Dairy Sci.* 72, 2884-2889.
- 25. Wite, J.W. 1975. Relative significance of dietary sources of nitrate and nitrite. *J. Agric. Food Chem.* 23, 886-891.

(Received July 28, 2003/Accepted September 8, 2003)

ABSTRACT: Isolation of *Lactobacillus plantaru*m HB1 from Tongchimi and Its Nitrite-Scavenging Effect Hyung Jae Yoo, Sun Suk Lee, Dong Seok Lee¹, and Han Bok Kim* (Department of Life Science, Hoseo University, Asan 336-795, ¹Department of Medical Laboratory Science, Inje University, Kimhae 621-749, Korea)

To obtain large pools of lactic acid bacteria, a strain was isolated from Tongchimi. Through its sugar fermentation and analysis of 16S rRNA gene, it was identified to be *Lactobacillus plantarum* HB1. This strain is Gram-positive and catalase-negative. In the range of 1~88 bp in the HB1 16S rRNA gene, the HB1 strain was homologous with other *L. plantarum* strains by almost 100 %, and in the range of the rest 32 bp, the HB1 strain showed considerable variation, compared to other strains. Nitrate which may exist in radish can be easily converted to nitrite. The nitrite interacts with amine, and becomes nitrosamine which may cause stomach cancer. The culture obtained by HB1 strain could eliminate 400 μM nitrite within 1.5 hr. It is necessary to isolate specific components which are involved in nitrite elimination in the culture and to study on its mechanism.